5.1 Different Forms of Linear Equations

Standard Form of a Linear Equation

If A, B and C are real numbers, the equation $A x+B y=C$ is called the standard form of the equation of a line. Whenever possible, it is best to write the equation with A, B and C as integers, and $A \geq 0$.

For example: $-3 x+y=4$ can be expressed as $3 x-y=-4 \leftarrow$ multiply each term by (-1)

$$
\frac{2}{3} x+2 y=3 \text { can be expressed as } 2 x+6 y=9 \quad \leftarrow \text { multiply each term by } 3
$$

Slope - Intercept Form of a Linear Equation

The equation $y=m x+b$ is the slope-intercept form of the equation of a line. The y-intercept of the line is $(0, b)$, and the slope of the line is m.

The standard form of an equation of a line can be re-written in slope-intercept form as follows:

$$
A x+B y=C \rightarrow B y=-A x+C \quad \rightarrow \quad y=-\frac{A}{B} x+\frac{C}{B}
$$

The slope of $A x+B y=C$ is $-\frac{A}{B}$
The y-intercept of $A x+B y=C$ is $\frac{C}{B}$, and the point at which the graph crosses the y-axis is $\left(0, \frac{C}{B}\right)$.

For example, consider the linear equation $2 x-3 y=12$. The slope intercept form of the line can be found in two ways:

$$
\begin{aligned}
2 x-3 y & =12 & & m=-\frac{A}{B}=-\frac{2}{-3}=\frac{2}{3} \\
-3 y & =-2 x+12 & \text { or } & \\
y & =\frac{2}{3} x-4 & & y=\frac{2}{3} x-4
\end{aligned}
$$

The slope of the line is $\frac{2}{3}$, and the y-intercept is $(0,-4)$.

Graphing a Line Using the Slope and y-Intercept

Step 1: Write the equation in slope-intercept form by solving for y.
Step 2: Identify the y-intercept $(0, b)$ and graph this point.
Step 3: Graph another point using the slope, counting from the y-intercept.
Step 4: Draw the line connecting the two points to obtain the graph.

Example 1 Graph $3 x+2 y=12$ by using the slope and y-intercept.
-Solution: Step 1: $\quad 3 x+2 y=12$

$$
\begin{aligned}
2 y & =-3 x+12 \\
y & =-\frac{3}{2} x+6
\end{aligned}
$$

Step 2: The y-intercept is $(0,6)$: mark this point.
Step 3: The slope is: $m=\frac{\text { rise }}{\text { run }}=-\frac{3}{2}$.
From (0,6), go to the right 2 units, and go down 3 units, to obtain the point $(3,2)$.

Step 4: Draw the line through the points $(0,6)$ and $(3,2)$.

Graphing a Line Using the Slope and a Point

Step 1: Locate and graph the given point.
Step 2: Graph another point using the slope, counting from the first point.
Step 3: Draw a line connecting the two points to obtain the graph.

Example 2 Graph the line through $(-2,-4)$ with slope 3.

Solution: The slope is 3 , therefore, from the point $(-2,-4)$, go up 3 units, and to the right 1 unit to obtain the point $(-1,-1)$.

Writing an Equation of a Line Using a Slope and a Point

By substituting given values for a slope and point of a line into $y=m x+b$, the line's equation can be found.

Example 3 Write the equation of the line with slope 2 that runs through $(-4,1)$ in slope intercept-form.

Solution: The point $(-4,1)$ gives a x-value of -4 and a y-value of 1 .

$$
\begin{aligned}
y=m x+b \rightarrow \quad 1 & =2(-4)+b \\
1 & =-8+b \\
b & =9
\end{aligned}
$$

Therefore, the equation of the line is $y=2 x+9$.

Point - Slope Form of a Linear Equation

The equation $y-y_{1}=m\left(x-x_{1}\right)$ is the point-slope equation of a line. The given point is $\left(x_{1}, y_{1}\right)$ and the slope of the line is m. This formula comes from re-arranging the definition of slope, $m=\frac{y-y_{1}}{x-x_{1}}$.

Example 4 Write the equation of a line with slope 2 that passes through $(-4,1)$ in slope intercept form.

Solution: Substituting the given point and slope into the point-slope equation gives:

$$
\begin{aligned}
y-y_{1}=m\left(x-x_{1}\right) \rightarrow \quad y-1 & =2(x-(-4)) \\
y-1 & =2(x+4) \\
y-1 & =2 x+8 \\
y & =2 x+9
\end{aligned}
$$

Example 5 Write the equation of a line with slope $\frac{4}{5}$ that passes through $(3,-2)$ in standard form.

Solution: Substituting the given point and slope into the point-slope equation gives:

$$
\begin{aligned}
y-y_{1}=m\left(x-x_{1}\right) \rightarrow \quad y-(-2) & =\frac{4}{5}(x-3) \\
y+2 & =\frac{4}{5}(x-3) \\
5(y+2) & =4(x-3) \\
5 y+10 & =4 x-12 \\
4 x-5 y & =22
\end{aligned}
$$

5.1 Exercise Set

1. Complete each statement.
a) The formula for the point-slope form of a line is \qquad .
b) In the equation $y=m x+b,(0, b)$ is called the \qquad .
c) The equation $y=m x+b$ is called the \qquad form of the equation of a line.
d) The standard form of the equation of a line is \qquad .
e) The slope of $A x+B y=C$ is \qquad .
f) The y-intercept of $A x+B y=C$ is \qquad .
2. Find the slope and y-intercept.
a) $3 x-2 y=6$
slope
b) $4 x+3 y=12$
slope
y-intercept
y-intercept \qquad
c) $2 x-5 y=-7$
slope \quad
d) $5 x+2 y=0$
slope \qquad
\qquad y-intercept \qquad
e) $x-4 y=-4$
slope \qquad f) $6 x-y=-3$
slope
y-intercept \qquad
3. Rewrite the standard form equation in slope-intercept form.
a) $2 x+y=6$
b) $3 x-y=4$
c) $4 x+3 y=12$
d) $2 x-3 y=6$
e) $5 x+4 y=3$
f) $6 x-3 y=4$
4. Rewrite the slope-intercept equation in standard form.
a) $y=-2 x+1$
b) $y=3 x-1$
c) $y=3 x$
d) $y=-\frac{2}{3} x+1$
e) $y=\frac{3}{4} x+5$
f) $y=-\frac{2}{5} x+\frac{1}{2}$
5. Rewrite the point-slope equation in slope-intercept form.
a) $y-2=3(x+1)$
b) $y+4=-2(x-1)$
c) $y-1=\frac{1}{3}(x+2)$
d) $y+4=-\frac{2}{5}(x-3)$
e) $y-\frac{2}{3}=\frac{1}{4}(x-8)$
f) $y-\frac{1}{4}=\frac{1}{2}\left(x+\frac{2}{3}\right)$
6. Rewrite the point-slope equation in standard form.
a) $y-2=3(x+1)$
b) $y+4=-2(x-1)$
c) $y-1=\frac{1}{3}(x+2)$
d) $y+4=-\frac{2}{5}(x-3)$
e) $y-\frac{2}{3}=\frac{1}{4}(x-8)$
f) $y-\frac{1}{4}=\frac{1}{2}\left(x+\frac{2}{3}\right)$
7. Match each description with an equation.
a) Slope $=-3$, passing through $(-1,2)$ \qquad i) $y=3 x$
b) Slope $=3, y$-intercept $(0,-6)$ \qquad
c) Passing through $(0,0)$ and $(3,-1)$ \qquad
ii) $y=-\frac{1}{3} x$
iii) $y=-3 x$
d) Passing through $(0,0)$ and $(-1,3)$ \qquad iv) $x-3 y=6$
e) Passing through $(2,0)$ and $(0,-6)$ \qquad v) $3 x-y=6$
vi) $y-2=-3(x+1)$
vii) $y+2=-3(x-1)$
8. Match each equation with the graph it most closely resembles.
a) $y=x-2$ \qquad
i)

ii)

d) $y=x+2$ \qquad
iii)

iv)

9. Write the equation of each line in slope-intercept form.
a) $(0,2), m=2$
b) $(0,-3), m=\frac{1}{2}$
c) $(0,3), m=0$
d) $(0,-2), m=-\frac{2}{3}$
e) $\left(0,-\frac{1}{2}\right), m=-\frac{3}{4}$
f) $(0,2.3), m=0.4$
10. Graph the linear equation.
a) $4 x-3 y=12$

b) $y=-\frac{2}{3} x+4$

c) $y-3=\frac{1}{2}(x+4)$

d) $2 x+3 y=10$

e) $y+2=-\frac{2}{3}(x+5)$

f) $5 x-2 y=0$

g) $y-\frac{5}{2}=-\frac{1}{2}\left(x+\frac{3}{2}\right)$

h) $y=\frac{5}{3} x-\frac{7}{2}$

11. Write the equation in standard form, slope-intercept form, and point-slope form.
a)

b)

standard form slope-intercept form \qquad
point-slope form \qquad
c)

d)

standard form
slope-intercept form
point-slope form \qquad
e)

standard form	
slope-intercept form	
point-slope form	

standard form slope-intercept form \qquad
point-slope form \qquad
f)

standard form	
slope-intercept form	
point-slope form	

5.2

Horizontal Lines

A horizontal line can be thought of as all the points on a graph where y has the same value. From section 5.1, it was shown that the slope of a horizontal line is 0 .

Using a slope of 0 in the slope-intercept equation of a line, $y=m x+b \rightarrow y=0 \cdot x+b \rightarrow y=b$

Equation of a Horizontal Line with \boldsymbol{y}-Intercept \boldsymbol{k}

$$
y=k
$$

For example: $y=3$

Vertical Lines

A vertical line can be thought of as all the points on a graph where x has the same value. From section 5.1 it was shown that the slope of a vertical line is undefined.

The equation of a vertical line is $x=k$ by definition, since the slope is undefined.

Equation of a Vertical Line with \boldsymbol{x}-Intercept \boldsymbol{k}

$$
x=k
$$

For example: $x=3$

Writing the Equation of a Line Through Two Points

With our knowledge from section 6.1 it is possible to write the equation of a line when the coordinates of two points on the line are known.

Example 1 Write the equation of the line passing through $\mathrm{A}(5,2)$ and $\mathrm{B}(1,-4)$ in slope-intercept form.

Solution: First, find the slope of the line.

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{2-(-4)}{5-1}=\frac{6}{4}=\frac{3}{2}
$$

Pick either point, and substitute it into the point-slope form equation. For this example, A(5, 2) is used.

$$
\begin{aligned}
y-y_{1}=m\left(x-x_{1}\right) \rightarrow y-2 & =\frac{3}{2}(x-5) \\
y-2 & =\frac{3}{2} x-\frac{15}{2} \\
y & =\frac{3}{2} x-\frac{15}{2}+2 \\
y & =\frac{3}{2} x-\frac{11}{2}
\end{aligned}
$$

Parallel and Perpendicular Lines

In chapter 5 it was shown that parallel lines have the same slope but different y-intercepts and perpendicular lines have slopes that are negative reciprocals of each other. We can now use these concepts to determine if equations are parallel, perpendicular or neither.

Example 2 In the system of equations $\left\{\begin{array}{c}x+2 y=6 \\ -2 x+y=3 \\ \text { or neither. }\end{array}\right\}$, determine if the lines are parallel, perpendicular,

Solution: The slope of the standard form of the equation of a line, $A x+B y=C$, is $-\frac{A}{B}$.
$x+2 y=6$ has slope $-\frac{1}{2}$
$-2 x+y=3$ has slope 2
The slopes are negative reciprocals of each other, therefore the lines are perpendicular.

Example 3 In the system of equations $\left\{\begin{array}{c}3 x-y=5 \\ -6 x+2 y=12\end{array}\right\}$, determine if the lines are parallel, perpendicular, or neither.

Solution: This problem can be solved by changing both equations to slope-intercept form.

$$
\begin{array}{rlrl}
3 x-y & =5 & -6 x+2 y & =12 \\
-y & =-3 x+5 & 2 y & =6 x+12 \\
y & =3 x-5, m=3 & y & =3 x+6, m=3
\end{array}
$$

The slopes are equal, therefore the lines are parallel.

Example $\left.4 \begin{array}{l}\text { In the system of equations }\left\{\begin{array}{l}4 x+3 y=7 \\ \text { or neither. }\end{array}\right. \\ 2 x-y=4\end{array}\right\}$, , determine if the lines are parallel, perpendicular,

Solution: Leaving the system of equations in standard form:

$$
\begin{aligned}
& 4 x+3 y=7 \text { has slope } m=-\frac{A}{B}=-\frac{4}{3} \\
& 2 x-y=4 \text { has slope } m=-\frac{A}{B}=-\frac{2}{-1}=2
\end{aligned}
$$

Changing the system of equations to slope-intercept form:

$$
\begin{array}{rlrl}
4 x+3 y & =7 & 2 x-y & =4 \\
3 y & =-4 x+7 & -y & =-2 x+4 \\
y & =-\frac{4}{3} x+\frac{7}{3}, m=-\frac{4}{3} & y & =2 x-4, m=2
\end{array}
$$

Both methods produce the same result: the slopes are neither the same, nor negative reciprocals, therefore the lines are neither parallel nor perpendicular.

5.2 Exercise Set

1. Match the graph $y=m x+b$ with its closest description.
a) $m<0, b<0$ \qquad
b) $m>0, b<0$ \qquad
c) $m<0, b>0$ \qquad
d) $m>0, b>0$ \qquad
i)

ii)

iii)

e) $m=0$ \qquad
iv)

v)

vi)

2. Match the graph with the linear relation.
a) $x-4 y=-8$ \qquad
b) $x+4 y=8$ \qquad
c) $4 x-y=-2$ \qquad
\qquad
i)

ii)

d) $4 x+y=2$
iii)

iv)

3. Determine the equation of the graph.
a)

b)

c)

d)

4. Determine the equation of a line through the given pair of points.
a) $(-4,1)$ and $(6,1)$
b) $(1,-4)$ and $(1,6)$
c) $(-2,0)$ and $(5,0)$
d) $(0,-2)$ and $(0,5)$
e) (a, b) and (c, b)
f) (b, a) and (b, c)
5. Write the equation of the line with the given characteristics.
a) vertical, passes through $(3,6)$
b) vertical, passes through $(-2,-4)$
c) horizontal, passes through $(3,6)$
d) horizontal, passes through $(-2,-4)$
6. For each pair of equations, determine whether the lines are parallel, perpendicular, or neither parallel nor perpendicular.
a) $2 x+5 y=7$
$4 x+10 y=2$
b) $-4 x+3 y=7$
$-8 x+6 y=0$
c) $4 x-3 y=6$
$4 x+6 y=-3$
d) $3 x-5 y=4$
$5 x-3 y=4$
e) $4 x-3 y=5$
$3 x+4 y=2$
f) $\begin{aligned} & 2 x-5 y=-3 \\ & 10 x+4 y=1\end{aligned}$
g) $\begin{aligned} 4 x-y & =3 \\ x-4 y & =-2\end{aligned}$
h) $\begin{array}{r}5 x-2 y=7 \\ 2 x+5 y=7\end{array}$
7. Write the equation of a line passing through the given set of points in slope-intercept form.
a) $(3,5)$ and $(2,4)$
b) $(5,-2)$ and $(-3,1)$
c) $(-4,1)$ and $(-2,-3)$
d) $(-1,-2)$ and $(-6,-4)$
e) $(6,-2)$ and $(-3,2)$
f) $(0,0)$ and $(-3,2)$
g) $(0,-6)$ and $(-4,0)$
h) $(5.2,-6.8)$ and $(-1.6,-3.8)$
i) (2,5) and $(-2,5)$
j) $(3,7)$ and $(3,-1)$
8. Reasoning.
a) If a line is horizontal, what is the slope of any line that is perpendicular to it?
c) What is the equation of the x-axis?
e) Find the value of c so that the graph of $4 x+c=3 y$ has an x-intercept of $(-2,0)$.
g) Find the value of c so that the graph of $3 x-c=2 y$ has a y-intercept of $(0,5)$.
i) If B is not zero, what will the graph of $B y+E=F$ look like?
k) What is the equation of a line with x and y coordinates that are opposite in value and passes through the origin?
b) If the graph of a linear equation has one point that is both the x-intercept and y-intercept, what point that be?
d) Find the x-intercept of $3 x-2 y=8$.
f) Find the y-intercept of $4 x=-3 y+2$.
h) If A is not zero, what will the graph of $A x+C=D$ look like?
j) What is the equation of a line with x and y coordinates that are equal, and passes through the origin?
1) What is the equation of a line passing through the point (a, b) with slope 0 ?
m) What is the equation of a line passing through the point (a, b) with an undefined slope?
n) What is the y-intercept of $a x+b y=c$?
p) What is the slope of the line $a x+b y=c$?
9. Find the x and y intercepts of the line $a x+b y=a b$.
10. Show that the equation of a line with points
$\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ can be written in the form $\left(y-y_{1}\right)\left(x_{2}-x_{1}\right)=\left(y_{2}-y_{1}\right)\left(x-x_{1}\right)$.
11. If the two points that a line passes through are known, its equation can be found. Explain how this is done.
12. What is the slope of all ordered pairs of the form $(x,-3 x)$?
13. In the equation, $a x+b y=2 x-3 y+6$, find a and b if the graph is a horizontal line passing through $(0,3)$.
14. Show that the equation of a line with x-intercept $(a, 0)$ and y-intercept $(0, b)$ can be written in the form $\frac{x}{a}+\frac{y}{b}=1$.
15. Determine the relationship between the graphs of the equations $A x+B y=C$ and $B x-A y=C$.
16. Think of different points on the graph of the horizontal line $y=2$. What do the points have in common? How do they differ?
17. Given that $0^{\circ} \mathrm{C}$ is the same temperature as $32^{\circ} \mathrm{F}$, and $100^{\circ} \mathrm{C}$ is equivalent to $212^{\circ} \mathrm{F}$, determine the equivalent of $68^{\circ} \mathrm{F}$ in ${ }^{\circ} \mathrm{C}$.
18. In the equation, $a x+b y=2 x-3 y+6$, find a and b if the graph is a vertical line passing through (3,0).

5.3

 Equations of Parallel and Perpendicular LinesTo write the equation of a line, a point and slope is needed. However, in some problems this information is not directly given, and further steps must be taken to find a point or slope.

When determining the equation of a line that is parallel to a given slope, the concept to remember is that parallel lines have equal slopes. When determining the equation of a line that is perpendicular to a given slope, the concept to remember is that perpendicular lines have slopes that are negative reciprocals of each other.

Example 1 Write the equation of a line parallel to $3 x-2 y=6$, and which goes through the point $\mathrm{A}(4,-2)$.
-Solution: $3 x-2 y=6$ has slope $m=-\frac{A}{B}=-\frac{3}{-2}=\frac{3}{2}$
Therefore, the slope of a line parallel to $3 x-2 y=6$ has slope $m=\frac{3}{2}$
Substituting the given point and slope into the point-slope equation of a line gives:

$$
\begin{aligned}
y-y_{1}=m\left(x-x_{1}\right) \rightarrow \quad y-(-2) & =\frac{3}{2}(x-4) & & \\
y+2 & =\frac{3}{2} x-6 & & \\
y & =\frac{3}{2} x-8 & & \text { (slope-intercept form) } \\
3 x-2 y & =16 & & \text { (standard form) }
\end{aligned}
$$

Example 2 Write the equation of a line perpendicular to $4 x+2 y=7$ going through the point $\mathrm{B}(-2,5)$.

Solution: $\quad 4 x+2 y=7$ has slope $m=-\frac{A}{B}=-\frac{4}{2}=-2$
Therefore the slope of a line perpendicular to $4 x+2 y=7$ has slope $m=\frac{1}{2}$.
Substituting the given point and slope into the point-slope equation of a line gives:

$$
\begin{aligned}
y-y_{1}=m\left(x-x_{1}\right) \rightarrow y-5 & =\frac{1}{2}(x-(-2)) \\
y-5 & =\frac{1}{2}(x+2) \\
y-5 & =\frac{1}{2} x+1
\end{aligned}
$$

$$
y=\frac{1}{2} x+6 \quad \text { (slope-intercept form) }
$$

$$
x-2 y=12 \quad(\text { standard form })
$$

5.3 Exercise Set

1. Find the slopes of lines parallel and perpendicular to the equation.
a) $y=3 x$
$m_{\|}$ \qquad b) $y=-2 x$
$m_{\|}$ \qquad
m_{\perp} \qquad
m_{\perp} \qquad
c) $y=-\frac{2}{3} x+2$
$m_{\|}$ \qquad
d) $y=\frac{3}{5} x-1$
$m_{\|}$
m_{\perp} \qquad
m_{\perp} \qquad
e) $2 x-3 y=4$
$m_{\|}$ \qquad
f) $3 x+y=2$
$m_{\|}$ \qquad
m_{\perp} \qquad
m_{\perp} \qquad
g) $5 x-y=0$
$m_{\|}$ \qquad
h) $x=2$
$m_{\|}$ \qquad
m_{\perp} \qquad
m_{\perp} \qquad
i) $y=-2$
$m_{\|}$ \qquad j) $x=2 y-1$
\qquad
\qquad
k) $\frac{3}{4} x=\frac{1}{3} y+\frac{1}{2}$
$m_{\|}$ \qquad l) $0.2 x+2.3=1.4 y$
$m_{\|}$ \qquad
m_{\perp} \qquad m \qquad
2. Find the equation of the line, in standard form, that passes through the given point and is parallel to the given line.
a) $P(0,0) ; y=2 x-5$
b) $P(0,0) ; x=2 y+5$
c) $P(1,3) ; 3 x-y=6$
d) $P(-2,0) ; 2 x+5 y=3$
e) $P(-6,3) ; y+4 x=-8$
f) $P(5,-2) ; 3 y+1=-4 x$
g) $P(-4,-3) ; x=\frac{3}{4} y-2$
h) $P(0,-5) ; x=-\frac{2}{3} y+1$
i) $\quad P(-5,2) ; x=3$
j) $P(-5,2) ; y=-4$
k) $P(-4,1) ; \frac{2}{3} x+\frac{3}{4} y=12$
1) $P\left(\frac{1}{2},-\frac{2}{3}\right) ; \frac{1}{3} x-0.4 y=2$
3. Find the equation of the line, in standard form, that passes through the given point and is perpendicular to the given line.
a) $P(0,0) ; y=2 x-5$
b) $P(0,0) ; x=2 y+5$
c) $P(1,3) ; 3 x-y=6$
d) $P(-2,0) ; 2 x+5 y=3$
e) $P(-6,3) ; y+4 x=-8$
f) $P(5,-2) ; 3 y+1=-4 x$
g) $P(-4,-3) ; x=\frac{3}{4} y-2$
h) $P(0,-5) ; x=-\frac{2}{3} y+1$
i) $\quad P(-5,2) ; x=3$
j) $\quad P(-5,2) ; \quad y=-4$
k) $P(-4,1) ; \frac{2}{3} x+\frac{3}{4} y=12$
I) $P\left(\frac{1}{2},-\frac{2}{3}\right) ; \frac{1}{3} x-0.4 y=2$
4. Determine the equation of a line parallel to the graph going through the given point, in standard form.
a) $(4,-2)$

b) $(-5,-4)$

c) $(2,1)$

d) $(5,-3)$

5. Determine the equation of a line perpendicular to the graph going through the given point, in standard form.
a) $(4,-2)$

b) $(-5,-4)$

c) $(2,1)$

d) $(5,-3)$

6. Find the equation of a line parallel to $3 x+4 y=8$ with the same y-intercept as $5 x-3 y=10$.
7. Find the equation of a line parallel to $2 x+7 y=10$ with the same x-intercept as $3 x-4 y=5$.
8. Find the equation of a line perpendicular to
$3 x+2 y=9$ with the same x-intercept as $2 x-5 y=0$.
9. A circle centred at the origin passes through the point $(-3,4)$. What is the equation of a line perpendicular to the radius at this point?
10. Find the equation of a line parallel to $x-3 y=8$ with the same y-intercept as $3 x+2 y=6$.
11. Find the equation of a line perpendicular to $2 x-3 y=7$ with the same y-intercept as $5 x-2 y=10$.
12. Find the equation of a line perpendicular to $\frac{3}{2} x=\frac{1}{2} y+1$ with the same x-intercept as $2 x+3 y=9$.
13. A rhombus has coordinates $(0,0),(3,4),(8,4)$, and $(5,0)$. What are the equations of the diagonals of the rhombus? What relationship is there between the diagonals?

5.4 Linear Applications and Modelling

Graphs are effective visual tools because they present information quickly and easily. Sometimes, data can be better understood when presented by a graph than by a table because the graph can reveal a trend or comparison.

Example 1 Water freezes at $32^{\circ} \mathrm{F}$, or $0^{\circ} \mathrm{C}$. Water boils at $212^{\circ} \mathrm{F}$, or $100^{\circ} \mathrm{C}$. Graph the linear relation between ${ }^{\circ} \mathrm{C}$ and ${ }^{\circ} \mathrm{F}$, and find a formula that converts Celsius to Fahrenheit.

Solution: The freezing point on the graph is $(0,32)$ The boiling point on the graph is $(100,212)$
$m=\frac{212-32}{100-0}=\frac{180}{100}=\frac{9}{5}$

By slope-intercept, $F=\frac{9}{5} C+32$

Example 2 It costs a popcorn vendor $\$ 490$ to make 150 bags of popcorn and $\$ 610$ to make 350 bags.
a) Graph the linear relation between cost and number of bags.
b) Find the cost equation.
c) Find the fixed cost.
d) Find the cost of 250 bags of popcorn.
e) How many bags of popcorn can be bought for $\$ 724$?

Solution: b) $m=\frac{610-490}{350-150}=\frac{120}{200}=0.60$
$C-490=0.60(B-150)$
$C-490=0.60 B-90$
$C=0.60 B+400$
c) The fixed cost is $\$ 400$
d) $C=0.60(250)+400=\$ 550$
e) $724=0.60 B+400$

$$
724-400=0.60 B
$$

$$
0.60 B=324
$$

$$
B=540
$$

Example 3 A family has a medical plan that pays 70% of all prescription costs, less a $\$ 200$ deductible each year.
a) Write a function that models the family's responsibility for prescription costs.
b) Determine the amount the medical plan will pay on $\$ 1250$ in prescription costs.
c) Determine the amount spent on prescription purchases if the amount the plan paid was $\$ 1250$.
d) Graph this function and label the answers from b) and c).

Solution: a) Let R be the refund, and C be the prescription cost.

$$
m=0.70, y \text {-intercept }=-200, R=0.70 \mathrm{C}-200
$$

b) $R=0.70 C-200$

$$
\begin{aligned}
& =0.70(1250)-200 \\
& =675
\end{aligned}
$$

The plan will pay $\$ 675$ on $\$ 1250$ in prescription costs.
c) $R=0.70 C-200$
$1250=0.70 C-200$
$1450=0.70 C$
$C=2071.43$
$\$ 2071.43$ is spent on prescription purchases, to get a $\$ 1250$ refund.
d)

5.4 Exercise Set

Assume linear appreciation or linear depreciation for all problems.

1. An insurance company purchased computers for its office. The value of the computers after two years was $\$ 80000$, and $\$ 56000$ after four years. Determine the purchase price of the computers.
2. The percent of 18-25 year olds who smoke worldwide has changed from 46.8% in 1987 to 37.2% in 2000. Predict the percentage of 18-25 year olds that will smoke in 2012.
3. A home was purchased for $\$ 410000$. The owner expects the home to double in value in the next 10 years. Find the appreciation equation.
4. In her first year of practice, a psychologist has 160 patients. By the third year, the number of patients grew to 246. If this trend continues, how many patients would she have in the fourth year?
5. A taxi cab is purchased for $\$ 36000$. At the end of 10 years it is sold for scrap for $\$ 1800$. Find the depreciation equation.
6. A printer costs $\$ 960$ new and is expected to be worth $\$ 140$ after six years. What will it be worth after four years?
7. A painting is expected to appreciate $\$ 75$ each year. If the painting will be worth $\$ 620$ in two years, what will it be worth in 14 years?
8. A time share cottage purchased four years ago is now worth $\$ 36200$. If the cottage has appreciated $\$ 2150$ per year, find its original purchase price.
9. A city with a population of 62000 had 480 police investigations in a year. When the population of the city rose to 74000 , the number of investigations was 640 in a year. If this trend continues, how many investigations will the city have when its population reaches 100000 ?
10. A grandfather clock is expected to be worth $\$ 2700$ in three years and $\$ 3200$ in five years. What will it be worth in eight years?
11. A printing company charges a fixed rate to set up the printing press, plus a cost of $\$ 3.50$ for every 100 copies. If 800 copies cost $\$ 64.00$, how much will it cost to print 1500 copies?
12. An electrical substation is worth $\$ 246000$ when it is installed new, but is worth nothing after its 15 year life cycle. Find the depreciation equation.
13. The total cost of a computer is the sum of the selling price, plus a sales tax of 12%, plus a $\$ 20$ disposal fee.
a) Express the total cost of the computer as a linear function of the selling price.
b) What is the total cost of a computer that sells for $\$ 1540$?
c) What is the selling price of a computer whose total cost was $\$ 1061.60$?
14. It costs a company $\$ 2140$ to produce 500 widgets and $\$ 3660$ to produce 900 widgets.
a) What is the fixed cost for producing widgets?
b) Find an equation relating the cost of producing widgets.
c) What is the total cost of producing 200 widgets?
d) How many widgets can be produced for $\$ 7308$?

5.5
 Function Notation

The notation $f(x)$ is another way of writing y as a function. For example, the function $y=2 x-4$ may be written as $f(x)=2 x-4$, where $f(x)$ is read " f of x ".

Without function notation, a problem could be stated: Given $y=2 x-4$, find y when $x=5$. Using function notation, the same problem would be stated: Given $f(x)=2 x-4$, find $f(5)$. The notation $f(5)$ implies the value of \boldsymbol{y} when \boldsymbol{x} is $\mathbf{5}$. The statement $f(5)=6$ says the value of y is 6 when x is 5 . This is the point $(5,6)$.

Example 1 Given $f(x)=3 x+5$, determine the coordinates of one point on the line for $f(2)$.

Solution: $\quad f(2)=3(2)+5=11$
Therefore the point is $(2,11)$.

Example 2 Given $f(x)=3 x+5$, determine the coordinates of the point where $f(x)=-7$.

- Solution:

$$
\begin{aligned}
f(x) & =3 x+5 \\
-7 & =3 x+5 \\
-7-5 & =3 x \\
-12 & =3 x \\
-4 & =x
\end{aligned}
$$

Therefore the point is $(-4,-7)$.

Example 3 Complete the table for $f(x)=3 x+5$.

x	$3 x+5$	$f(x)$	(x, y)
3			

Solution:

x	$3 x+5$	$f(x)$	(x, y)
3	14	$f(3)$	$(3,14)$

Example 4 Determine the slope-intercept function $f(x)=m x+b$ if $f(1)=4$ and $f(3)=-2$.

Solution: $\quad f(1)=4$ means the point $(1,4)$
$f(3)=-2$ means the point $(3,-2)$
$m=\frac{4-(-2)}{1-3}=\frac{6}{-2}=-3$
$f(x)=m x+b$
$f(1)=-3(1)+b$
$4=-3+b$
$b=7$
Therefore $f(x)=-3 x+7$

Example 5 If $f(x)=2 x+1$,

a) What is $f(3 x)$?
b) What is $f(x+3)$?

Solution:
a) $f(3 x)=2(3 x)+1$

$$
=6 x+1
$$

b) $f(x+3)=2(x+3)+1$

$$
=2 x+7
$$

Example 6 If $f(x)=2 x+1$, determine $\frac{f(x+h)-f(x)}{h}, h \neq 0$.

Solution: $\quad f(x)=2 x+1, \quad f(x+h)=2(x+h)+1$
Therefore $\frac{f(x+h)-f(x)}{h}=\frac{[2(x+h)+1]-[2 x+1]}{h}$

$$
\begin{aligned}
& =\frac{2 x+2 h+1-2 x-1}{h} \\
& =\frac{2 h}{h} \\
& =2
\end{aligned}
$$

5.5 Exercise Set

1. Complete the table for the linear function defined by $g(x)=-2 x+3$.

x	$-2 x+3$	$g(x)$	(x, y)
2			
-4			
$2 c$			
$c-2$		$-c+1$	
		-	

2. For $f(x)=3 x-2$, find:
a) $f(3)$
b) $f(-4)$
c) $f(k)$
d) $f(2 x-1)$
e) $f(x+h)$
f) $f(x)+f(h)$
3. For $f(x)=4 x+5$, find:
a) $f(3)$
b) $f(-4)$
c) $f(k)$
d) $f(2 x-1)$
e) $f(x+h)$
f) $f(x)+f(h)$
4. For $f(x)=-5 x+2$, find:
a) $f(x)=-3$
b) $f(x)=7$
c) $f(x)=-12$
d) $f(x)=-5$
e) $f(x)=a$
f) $f(x)=-5 a+7$
5. Graph each function over the real numbers.
a) $f(x)=2 x+1$

c) $f(x)=\frac{3}{4} x-2$

e) $f(x)=3$

b) $f(x)=-\frac{1}{2} x+3$

d) $f(x)=-\frac{2}{3} x-4$

f) $f(x)=-\frac{1}{4} x^{2}+4$

6. Graph each function if the domain is $\{-3,-2,-1,0,1,2\}$
a) $f(x)=2 x+1$

c) $f(x)=\frac{3}{4} x-2$

e) $f(x)=-3$

b) $f(x)=-\frac{1}{2} x+3$

d) $f(x)=-\frac{2}{3} x-4$

f) $f(x)=\frac{1}{4} x^{3}$

7. For $g(r)=2 \pi r$, find:
a) $g(0.5)$
b) $g\left(\frac{8}{3}\right)$
c) $g(h)$
d) $g(h+2)$
8. For $g(r)=2 \pi r h$, find:
a) $g(0.5)$
b) $g\left(\frac{8}{3}\right)$
c) $g(h)$
d) $g(h+2)$
9. For $g(r)=\pi r^{2}$, find:
a) $g\left(\frac{1}{2}\right)$
b) $g\left(\frac{8}{3}\right)$
c) $g(h)$
d) $g(h+2)$
10. For $g(r)=\pi r^{2} h$, find:
a) $g\left(\frac{1}{2}\right)$
b) $g\left(\frac{8}{3}\right)$
c) $g(h)$
d) $g(h+2)$
11. Use the graph of each function to state the domain, state the range, determine $f(2)$, and solve $f(x)=2$ for x.

\qquad
$f(x)=2$
\qquad
range
$f(2)$ \qquad

$$
f(x)=2
$$

\qquad
range \qquad
$f(2)$ \qquad

$$
f(x)=2
$$

\qquad
domain \qquad
range \qquad
$f(2)$ \qquad

$$
f(x)=2
$$

\qquad
12. Complete the table, and graph the function. Also, give the domain and range of the function.
a) $g(x)=-2 x-1$

x	$g(x)$
0	
1	
-1	
-2	

domain \qquad
range \qquad

b) $g(x)=3-\frac{x}{2}$

x	$g(x)$
-4	
-2	
0	
4	

domain \qquad
range \qquad

c) $g(x)=x-4$

x	$g(x)$
	1
	-1
	-3
	-5

domain \qquad
range \qquad

d) $g(x)=\frac{x}{2}-1$

x	$g(x)$
	1
	0
	-1
	-2

domain \qquad
range \qquad

13. Determine $f(x)=m x+b$.
a) $\begin{aligned} f(0) & =-3 \\ f(-2) & =5\end{aligned}$
b) $f(2)=4$
$f(-1)=-4$
c) $f(2)=5$
$f(-3)=3$
d) $f(-3)=6$
$f(1)=-2$
e) $f(3)=2$
$f(-3)=2$
f) $f\left(\frac{1}{2}\right)=-\frac{2}{3}$
$f\left(-\frac{5}{2}\right)=\frac{8}{3}$
14. Determine $\frac{f(x+h)-f(x)}{h}, h \neq 0$.
a) $f(x)=3 x$
b) $f(x)=3 x-4$
c) $f(x)=5-2 x$
d) $f(x)=x^{2}$
15. The function $f(c)=\frac{9}{5} c+32$ determines the Fahrenheit equivalent of degrees Celsius. Find the Fahrenheit equivalent of:
a) $30^{\circ} \mathrm{C}$
b) $0^{\circ} \mathrm{C}$
c) $-40^{\circ} \mathrm{C}$
17. The function $P(d)=\frac{d}{32}+1$ gives the pressure in atmospheres at a depth of d feet in the ocean.
a) Find the pressure at 160 feet.
b) At what depth is the pressure 9.6 atmospheres?
16. A ball is dropped from a high rise building. The height of the ball in metres, t seconds after it is dropped, is given by the function $h(t)=-9.8 t^{2}+100$.
a) Find $h(0)$.
b) Find the height of the ball after 2 seconds.
c) Find the time it takes for the ball to hit the ground.
18. The temperature below the surface of the Earth is given by $T(d)=10 d+20$, where T is in celsius and d is in kilometres.
a) Find the temperature 12 km below the surface of the earth.
b) What depth has a temperature of $166^{\circ} \mathrm{C}$?

5.6 Chapter Review

Section 5.1

1. Find the slope and y-intercept.
a) $2 x-5 y=7$
slope \qquad b) $5 x+y=-2$
slope \qquad
y-intercept \qquad
y-intercept \qquad
2. Write the standard form equation in slope-intercept form.
a) $6 x-y=3$
b) $2 x+5 y=7$
3. Write the slope-intercept equation in standard form.
a) $y=-\frac{2}{3} x+4$
b) $y=-3 x+\frac{2}{5}$
4. Write the point-slope equation in slope-intercept form.
a) $y+1=-\frac{2}{3}(x-4)$
b) $y-\frac{2}{3}=-4\left(x+\frac{1}{2}\right)$
5. Write the point-slope equation in standard form.
a) $y+1=-\frac{2}{3}(x-4)$
b) $y-\frac{2}{3}=-4\left(x+\frac{1}{2}\right)$
6. Write the equation of each line in standard form.
a) $(0,-3), m=-4$
b) $(2,0), m=-\frac{1}{3}$
7. Determine the equation in: standard form, slope-intercept form and point-slope form.
a)

b)

standard form \qquad
slope-intercept form \qquad
point-slope form \qquad
standard form
slope-intercept form
\qquad
point-slope form

Section 5.2

8. Determine the equation of the graph.
a)

b)

9. Write the equation of the line with the given characteristics.
a) vertical, passes through $(-2,5)$
b) horizontal, passes through $(-2,5)$
c) vertical, passes through (a, b)
d) horizontal, passes through (a, b)
10. For each pair of equations, determine whether the lines are parallel, perpendicular or neither parallel nor perpendicular.
a) $3 x+2 y=7$
$4 x+6 y=2$
b) $5 x-2 y=4$
$4 x+10 y=3$
c) $y=2 x-3$
$2 x+y=-3$
d) $3 x-y=2$
$6 x-2 y=2$
11. Write the equation of the line passing through the given set of points in standard form.
a) $(-3,1)$ and $(-4,-6)$
b) $(-2,-3)$ and $(-5,-1)$

Section 5.3

12. Find the slopes of lines parallel and perpendicular to the following equations.
a) $3 x-4 y=-6$
$m_{\|}$ \qquad
b) $x=3 y+2$
$m_{\|}$ \qquad
m_{\perp} \qquad
m_{\perp} \qquad
13. Find the equation of the line that passes through the given point and is parallel to the given line.
a) $P(-2,4) ; 2 x-3 y=5$
b) $P(4,-1) ; 4 x+7 y=-2$
14. Find the equation of the line that passes through the given point and is perpendicular to the given line.
a) $P(-2,4) ; 2 x-3 y=5$
b) $P(4,-1) ; 4 x+7 y=-2$
15. Determine the equation of a line, in standard form which is parallel to the line and which goes through the given point.
a) $(5,2)$

b) $(-3,4)$

16. Determine the equation of a line, in standard form which is perpendicular to the line and which goes through the given point.
a) $(5,2)$

b) $(-3,4)$

Section 5.4

17. The cost to print 1200 books is $\$ 11140$, and the cost to print 2000 books is $\$ 17940$. Assuming there is a linear relation between the costs and the number of books printed.
a) Find the cost equation.
b) Find the "set up" cost of printing the books.
c) Find the cost of 3000 books.
d) How many books can be purchased for $\$ 24740$.

Section 5.5

18. For $f(x)=-3 x-2$, find:
a) $f(3)$
b) $f(-4)$
c) $f(x)=3$
d) $f(x)=-4$
e) $f(a)$
f) $f(x)=a$
g) $f(x+h)$
h) $f(x)+f(h)$
19. Determine $f(x)=m x+b$.
a) $f(3)=4$
$f(-2)=6$
b) $f(-1)=-4$
$f(3)=7$
c) $f(-4)=-2$
$f(1)=5$
d) $f(4)=2$
$f(2)=4$
e) $f(a)=2 a$
$f(b)=2 b$
f) $f(a)=b$
$f(b)=a$
