FOM 10 - Chapter 1 PRACTICE Test***

/26

Each question is written response (except #2). Show all of your work.

- 1) Are the following statements true of false: (0.5 marks each)
 - a) All natural numbers are integers:
 - b) All rational numbers are whole numbers:

T	
-	
	O.7 is rational,
	but NOT whole !

- 2) To which set of numbers does $\sqrt[3]{-64}$ belong? (circle BEST answer for 1 mark)
- b) Irrational c) Whole, Integer, and Rational
- d) Rational yes
- 3) Find the Greatest Common Factor (GCF) and Least Common Multiple (LCM) of the

following numbers:

and

4) Determine the following CUBE ROOT using the grouping method: (2 marks)

(*marks ONLY if the grouping method shown)

** use Calculator to help factor!

91125 =
$$3.3.3.3.3.5.5.5$$

91125 = $(3.3.5)(3.3.5)(3.3.5)$
91125 = $(45)(45)(45)$

So ... ³√91125 = 5) Write each radical in SIMPLEST Form, as a mixed radical: (1 mark each)

a)
$$\sqrt{63}$$

= $\sqrt{9 \times 7}$
= $\sqrt{9} \times \sqrt{7}$
= $3\sqrt{7}$

c)
$$\sqrt{200}$$

= $\sqrt{100 \times 2}$
= $\sqrt{100} \times \sqrt{2}$
= $10\sqrt{2}$

d)
$$3\sqrt[3]{81} = 3\sqrt[3]{27} \times \sqrt[3]{3}$$

= $3\sqrt[3]{27} \times \sqrt[3]{3}$
= $3\cdot 3\cdot \sqrt[3]{3}$
= $9\sqrt[3]{3}$

6) Write each radical as an ENTIRE radical: (1 mark each)

a)
$$5\sqrt{5} = \sqrt{25}\sqrt{5}$$

= $\sqrt{25 \times 5}$
= $\sqrt{125}$

b)
$$3\sqrt[3]{2} = \sqrt[3]{27}\sqrt[3]{2}$$

= $\sqrt[3]{27 \cdot 2}$
= $\sqrt[3]{54}$

7) A square has an area of $150cm^2$. Find the side length as a radical in simplest form.

7) A square has an area of 150cm². Find the side length as a radical in simple (1 mark)
$$A = 5 \times 5$$

$$150 = 5^{2}$$

$$5^{2} = 150$$

$$5 = \sqrt{25} \times 6 = \sqrt{25} \times \sqrt{6} = 5\sqrt{6} \text{ cm}$$
8) Write the following as a radical: (1 mark)

$$x^{\frac{7}{4}} = \sqrt{2}$$

9) Write the following as a power (exponent form): (1 mark)

$$(\sqrt[5]{2})^3$$

Name:	
Date:	
	Block:

10) Evaluate the following: (2 marks each)

a)
$$2^{-5} = \frac{1}{2^5} = \boxed{\frac{1}{32}}$$
 b) $(-125)^{-\frac{1}{3}} = \frac{1}{(-125)^{\frac{1}{3}}} = \sqrt{\frac{1}{325}} = \frac{1}{-5}$ $= -\frac{1}{5}$

11) Simplify. Answer must only have positive exponents. (2 marks each)

a)
$$\frac{4p^{7}q^{-9}}{12pq^{2}}$$

$$= \frac{\rho^{7}}{3\rho^{9}q^{9}}$$

$$= \frac{16\chi^{2}q^{4}}{\chi^{6}}$$

$$= \frac{16\chi^{2}q^{4}}{\chi^{6}}$$

$$= \frac{16\chi^{2}q^{4}}{\chi^{6}}$$

$$= \frac{16\chi^{3}}{\chi^{6}}$$

$$= \frac{\chi^{6}}{3q^{11}}$$

$$= \frac{\chi^{6}}{16\chi^{13}} = \frac{\chi^{12}}{256\chi^{26}}$$

12) Simplify. Answer must only have positive exponents. (3 marks)

$$\left(\frac{32x^{7}y^{\frac{-3}{4}}}{\frac{1}{8x^{-7}y^{\frac{5}{4}}}}\right)^{\frac{1}{2}} = \left(\frac{4x^{7}x^{7}}{\frac{5}{4}x^{\frac{3}{4}}}\right)^{\frac{1}{2}} = \left(\frac{4x^{14}}{\frac{3}{4}x^{\frac{1}{4}}}\right)^{\frac{1}{2}} = \left(\frac{4x^{14}}{\frac{3}x^{\frac{1}{4}}}\right)^{\frac{1}{2}} = \left(\frac{4x^{14}}{\frac{3}x^{\frac{1}{4}}}\right)^{\frac{1}{4}}$$

BONUS QUESTION ON THE BACK!

lame:	
Date:	
	Block:

BONUS (for 1 BONUS mark)

What is the <u>side length</u> of the *Smallest* **SQUARE WALL** that could be tiled with rectangular tiles that measure 24 cm by 42 cm, without cutting any of the tiles?

answer (x) will be bigger than #'s, so L.C.M.!

42

$$24 = 2.2.2.3$$

$$24 = 2^3.3$$

42=2:3:2

LCM = 23.3'.7' wighest power of any prime on either list.

LCM=-168

so, the side length of smallest square wall is 168cm