\qquad
\qquad

*Chapter 4 - Linear Functions PRACTICE Unit Test

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

1. Determine the slope of the following graphs (1 mark each):
a.

$m=$ \qquad
b.

$m=$ \qquad
2. Find the slope of the line containing each pair of points (1 mark each):
a. $(2,1)$ and $(5,6)$
b. $(-4,1)$ and $(-2,-5)$
3. Determine the x-intercept and y-intercept of the linear equation with slope $m=-\frac{1}{3}$ going through the point $(3,-3)$. (2 marks)

$$
x \text { - intercept: }
$$

\qquad
y-intercept: \qquad
\qquad
\qquad
4. Draw a line with a slope of $m=$ undefined that has a x-intercept of 5 (1 mark).

5. Draw a line with a slope of $m=0$ and has a y-intercept of -4 (1 mark).

6. Find a number n so that the line passing through the points $(n, 8)$ and $(-2,-4)$ has a slope of 3 (2 marks).
\qquad
Block: \qquad
7. Determine whether Line 1, passing through the first pair of points, is parallel, perpendicular or neither to Line 2 , passing through the second pair of points (3 marks):

Line 1 through $(4,-1)$ and $(6,2)$, Line 2 through $(-6,-6)$ and $(4,9)$
8. Find the slope of a line that is perpendicular to a line that passes through $(-5,1)$ and $(4,-2)$ (2 marks).
9. Show that the points $A(1,3), B(4,-3)$ and $C(0,-5)$ are vertices of a right triangle. (3 marks)

\qquad
\qquad
10. The line through $(-6, y)$ and $(2,-5)$ is parallel to a line with slope $\frac{-5}{4}$. Find the value of y. (2 marks)
11. Given the following graphs, determine the rate of change: (2 marks each)
a. Length of Unborn Child

Rate of change: \qquad
b. Maximum Heart Rate

Rate of change: \qquad
\qquad
12. A $\mathbf{3}$ year old car is worth $\$ 24750$, and will be worth $\$ 4650$ when it is 18 years old. (*Assume relationship is LINEAR)
a. Write the equation that shows the Value of the car (\boldsymbol{V}) depends on the depreciation rate (d), the number of years old it is (\boldsymbol{n}), and the value of the car when it was new, or the initial value (i) (1 mark)
b. Find the yearly depreciation of the car (rate of change). (1 mark)
c. Find the price of the car when it was new (the initial value, or i). (1 mark)
d. What is the linear equation that describes this relation, and what is the Value of the car when it is $\mathbf{1 1}$ years old. (2 mark)
e. After how many years will the cars' value be $\mathbf{\$ 1 9 , 3 9 0}$? (1 mark)

